
Page 1 of 6

Microcode decoder & processing
control circuit

neverfear.org

Table of Contents
Overview of architecture .. 2

The instruction set .. 2

Control signals ... 3

ALU functions .. 3

An example simulation ... 4

The simulation program .. 4

What does the simulation program do? ... 4

Running the simulation ... 5

Page 2 of 6

Overview of architecture
It’s important to note a few things about my architecture before understanding the circuit diagram.

1. The word size of the circuit is 8 bits

2. There are 3 buses

a. Instruction bus which is 12 bits wide

b. Control bus which is 16 bits wide (although currently only 9 bits are used)

3. Output bus which is 8 bits wide

4. The microcode instruction set is currently configured with 8 instruction OpCodes

5. Instructions are 12 bits wide

a. The first 4 bits is the OpCode

b. The second 8 bits is operand X

6. Not all instructions require X (namely any arithmetic instruction does not require X)

7. Operands to arithmetic instructions are always assumed to be present in the registers

named RegA (first operand) and RegB (second operand)

8. RAM addressing is always direct

9. The output register is referred to as operand O in the instruction set

10. With the current control line specification, only a max of 4 ALU functions may be set (since

as you’ll see there is only 2 ALU function bits allocated for each operand currently)

The instruction set
Given below is a table of available instructions that contains a description of the instruction and

required parameters.

Instruction OpCode Requires X? Description

Load X -> A 0000 Yes Load the literal value X into register A

Load X -> B 0001 Yes Load the literal value X into register B

Add A B 0010 No Add the values in register A and B

Sub B A 0011 No Subtract the value in register B from the value in
register A

Load M(X) -> A 0100 Yes Load the value at memory address X into register A

Load M(X) -> B 0101 Yes Load the value at memory address X into register B

Load O -> M(X) 0110 Yes Load the value in register O into memory at address X

Inc A 0111 No Increment the value in register A by 1

Page 3 of 6

Control signals
The OpCode is passed into a programmable read only memory bank and outputs the µCode control

signals for each instruction. Below is a table of currently available control signals and their effects.

Control Line # General Description

Effect when signal is

0 1

0 Select input from X The value of X is used in the
circuit

The value of X is not used

1 Register A access Output value in register A Write input value to
register A

2 Register B access Output value in register B Write input value to
register B

3 Register O access Output value in register O Write input value to
register O

4 Memory bank M access Write input value to M at
address X

Read value of memory M at
address X

5 Select use of operand M Select use of component M M is not used

6 ALU function bit 0 ALU function map address bit

7 ALU function bit 1 ALU function map address bit

8 Select use of FuncMap Select use of FuncMap FuncMap is not used

Given below is a table of OpCodes and their control signals

Instruction OpCode

Control Line #

0 1 2 3 4 5 6 7 8

Load X -> A 0000 0 1 0 0 1 1 0 0 1

Load X -> B 0001 0 0 1 0 1 1 0 0 1

Add A B 0010 1 0 0 1 1 1 0 0 0

Sub B A 0011 1 0 0 1 1 1 1 0 0

Load M(X) -> A 0100 1 1 0 0 1 0 0 0 1

Load M(X) -> B 0101 1 0 1 0 1 0 0 0 1

Load O -> M(X) 0110 1 1 1 0 0 0 0 0 1

Inc A 0111 1 0 0 1 1 1 0 1 0

ALU functions
Given below is the function map table. There are currently only 3 defined ALU operations

Operation FuncMap Address

ALU Mode Select Bits

0 1 2 3 Cn

Add 00 1 0 0 1 1

Subtract 01 0 1 1 0 0

Increment 10 0 0 0 0 0

Page 4 of 6

An example simulation

The simulation program

To demonstrate this circuit let’s similar a simple “program” that demonstrates the use of all of the

instructions. Let’s imagine our program is this:

Load 0x04 -> A

Inc A

Load O -> M(0x00)

Load 0x02 -> B

Load M(0x00) -> A

Sub B A

Load O -> M(0x01)

Load 0x02 -> A

Load M(0x01) -> B

Add A B

Load O -> M(0x02)

What does the simulation program do?

The program does this:

1. Load RegA with 0x04

2. Increment A by 1 and place the result in the output register (the output value will be 0x05)

3. Save the output value into memory at address 0x00

4. Load RegB with 0x02

5. Load RegA with the value in memory at address 0x00 (our previously calculated value of

0x05)

6. Subtract 0x02 from 0x05 (the output value will be 0x03)

7. Save the output value into memory at address 0x01

8. Load RegA with 0x03

9. Load RegB with the value in memory at address 0x01 (our previously calculated value of

0x03)

10. Add 0x03 to 0x03 (the output value will be 0x06)

11. Save the output value into memory at address 0x02

Page 5 of 6

Running the simulation

To run this program in CircuitMaker follow this procedure:

1. Load 0x04 -> A
a. Set the component labelled “OpCode” to the value 0

b. Set the component labelled “ArgX1” to 0

c. Set the component labelled “ArgX2” to 4

d. Run simulation

e. Stop simulation

2. Inc A
a. Set the component labelled “OpCode” to the value 7

b. Run simulation

c. Stop simulation

3. Load O -> M(0x00)
a. Set the component labelled “OpCode” to the value 6

b. Set the component labelled “ArgX1” to 0

c. Set the component labelled “ArgX2” to 0

d. Run simulation

e. Stop simulation

4. Load 0x02 -> B
a. Set the component labelled “OpCode” to the value 1

b. Set the component labelled “ArgX1” to 0

c. Set the component labelled “ArgX2” to 2

d. Run simulation

e. Stop simulation

5. Load M(0x00) -> A
a. Set the component labelled “OpCode” to the value 4

b. Set the component labelled “ArgX1” to 0

c. Set the component labelled “ArgX2” to 0

d. Run simulation

e. Stop simulation

6. Sub B A
a. Set the component labelled “OpCode” to the value 3

b. Run simulation

c. Stop simulation

7. Load O -> M(0x01)
a. Set the component labelled “OpCode” to the value 6

b. Set the component labelled “ArgX1” to 0

c. Set the component labelled “ArgX2” to 1

d. Run simulation

e. Stop simulation

8. Load 0x03 -> A
a. Set the component labelled “OpCode” to the value 0

b. Set the component labelled “ArgX1” to 0

c. Set the component labelled “ArgX2” to 3

d. Run simulation

Page 6 of 6

e. Stop simulation

9. Load M(0x01) -> B
a. Set the component labelled “OpCode” to the value 5

b. Set the component labelled “ArgX1” to 0

c. Set the component labelled “ArgX2” to 1

d. Run simulation

e. Stop simulation

10. Add A B

a. Set the component labelled “OpCode” to the value 2

b. Run simulation

c. Stop simulation

11. Load O -> M(0x02)

a. Set the component labelled “OpCode” to the value 6

b. Set the component labelled “ArgX1” to 0

c. Set the component labelled “ArgX2” to 2

d. Run simulation

e. Finish simulation

The memory component at the end of this program will look like this:

Memory Address Value

0x00 0x05

0x01 0x03

0x02 0x06

